skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wright, Rachel M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In July 2016, East Bank of Flower Garden Banks (FGB) National Marine Sanctuary experienced a localized mortality event (LME) of multiple invertebrate species that ultimately led to reductions in coral cover. Abiotic data taken directly after the event suggested that acute deoxygenation contributed to the mortality. Despite the large impact of this event on the coral community, there was no direct evidence that this LME was driven by acute deoxygenation, and thus we explored whether gene expression responses of corals to the LME would indicate what abiotic factors may have contributed to the LME. Gene expression of affected and unaffected corals sampled during the mortality event revealed evidence of the physiological consequences of the LME on coral hosts and their algal symbionts from two congeneric species (Orbicella franksiandOrbicella faveolata). Affected colonies of both species differentially regulated genes involved in mitochondrial regulation and oxidative stress. To further test the hypothesis that deoxygenation led to the LME, we measured coral host and algal symbiont gene expression in response to ex situ experimental deoxygenation (control = 6.9 ± 0.08 mg L−1, anoxic = 0.083 ± 0.017 mg L−1) in healthyO. faveolatacolonies from the FGB. However, this deoxygenation experiment revealed divergent gene expression patterns compared to the corals sampled during the LME and was more similar to a generalized coral environmental stress response. It is therefore likely that while the LME was connected to low oxygen, it was a series of interconnected stressors that elicited the unique gene expression responses observed here. These in situ and ex situ data highlight how field responses to stressors are unique from those in controlled laboratory conditions, and that the complexities of deoxygenation events in the field likely arise from interactions between multiple environmental factors simultaneously. 
    more » « less
  2. Abstract Increasing ocean temperatures are causing dysbiosis between coral hosts and their symbionts. Previous work suggests that coral host gene expression responds more strongly to environmental stress compared to their intracellular symbionts; however, the causes and consequences of this phenomenon remain untested. We hypothesized that symbionts are less responsive because hosts modulate symbiont environments to buffer stress. To test this hypothesis, we leveraged the facultative symbiosis between the scleractinian coralOculina arbusculaand its symbiontBreviolum psygmophilumto characterize gene expression responses of both symbiotic partners in and ex hospite under thermal challenges. To characterize host and in hospite symbiont responses, symbiotic and aposymbioticO. arbusculawere exposed to three treatments: (1) control (18°C), (2) heat (32°C), and (3) cold (6°C). This experiment was replicated withB. psygmophilumcultured fromO. arbusculato characterize ex hospite symbiont responses. Both thermal challenges elicited classic environmental stress responses (ESRs) inO. arbuscularegardless of symbiotic state, with hosts responding more strongly to cold challenge. Hosts also exhibited stronger responses than in hospite symbionts. In and ex hospiteB. psygmophilumboth down‐regulated gene ontology pathways associated with photosynthesis under thermal challenge; however, ex hospite symbionts exhibited greater gene expression plasticity and differential expression of genes associated with ESRs. Taken together, these findings suggest thatO. arbusculahosts may buffer environments ofB. psygmophilumsymbionts; however, we outline the future work needed to confirm this hypothesis. 
    more » « less
  3. About 190 km south of the Texas–Louisiana border, the East and West Flower Garden Banks (FGB) have maintained > 50% coral cover with infrequent and minor incidents of disease or bleaching since monitoring began in the 1970s. However, a mortality event, affecting 5.6 ha (2.6% of the area) of the East FGB, occurred in late July 2016 and coincided with storm-generated freshwater runoff extending offshore and over the reef system. To capture the immediate effects of storm-driven freshwater runoff on coral and symbiont physiology, we leveraged the heavy rainfall associated with Hurricane Harvey in late August 2017 by sampling FGB corals at two time points: September 2017, when surface water salinity was reduced (∼34 ppt); and 1 month later when salinity had returned to typical levels (∼36 ppt in October 2017). Tissue samples (N = 47) collected midday were immediately preserved for gene expression profiling from two congeneric coral species (Orbicella faveolata and Orbicella franksi) from the East and West FGB to determine the physiological consequences of storm-derived runoff. In the coral, differences between host species and sampling time points accounted for the majority of differentially expressed genes. Gene ontology enrichment for genes differentially expressed immediately after Hurricane Harvey indicated increases in cellular oxidative stress responses. Although tissue loss was not observed on FGB reefs following Hurricane Harvey, our results suggest that poor water quality following this storm caused FGB corals to experience sub-lethal stress. We also found dramatic expression differences across sampling time points in the coral’s algal symbiont, Breviolum minutum. Some of these differentially expressed genes may be involved in the symbionts’ response to changing environments, including a group of differentially expressed post-transcriptional RNA modification genes. In this study, we cannot disentangle the effects of reduced salinity from the collection time point, so these expression patterns could also be related to seasonality. These findings highlight the urgent need for continued monitoring of these reef systems to establish a baseline for gene expression of healthy corals in the FGB system across seasons, as well as the need for integrated solutions to manage stormwater runoff in the Gulf of Mexico. 
    more » « less
  4. Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships. 
    more » « less
  5. Abstract Coral reefs are declining globally as climate change and local water quality press environmental conditions beyond the physiological tolerances of holobionts—the collective of the host and its microbial symbionts. To assess the relationship between symbiont composition and holobiont stress tolerance, community diversity metrics were quantified for dinoflagellate endosymbionts (Family: Symbiodiniaceae) from eightAcropora milleporagenets that thrived under or responded poorly to various stressors. These eight selected genets represent the upper and lower tails of the response distribution of 40 coral genets that were exposed to four stress treatments (and control conditions) in a 10‐day experiment. Specifically, four ‘best performer’ coral genets were analyzed at the end of the experiment because they survived high temperature, highpCO2, bacterial exposure, or combined stressors, whereas four ‘worst performer’ genets were characterized because they experienced substantial mortality under these stressors. At the end of the experiment, seven of eight coral genets mainly hostedCladocopiumsymbionts, whereas the eighth genet was dominated by bothCladocopiumandDurusdiniumsymbionts. Symbiodiniaceae alpha and beta diversity were higher in worst performing genets than in best performing genets. Symbiont communities in worst performers also differed more after stress exposure relative to their controls (based on normalized proportional differences in beta diversity), than did best performers. A generalized joint attribute model estimated the influence of host genet and treatment on Symbiodiniaceae community composition and identified strong associations among particular symbionts and host genet performance, as well as weaker associations with treatment. Although dominant symbiont physiology and function contribute to host performance, these findings emphasize the importance of symbiont community diversity and stochasticity as components of host performance. Our findings also suggest that symbiont community diversity metrics may function as indicators of resilience and have potential applications in diverse disciplines from climate change adaptation to agriculture and medicine. 
    more » « less